第二招:公式
例3.在100个学生中,音乐爱好者有56人,体育爱好者有75人,那么既爱好音乐又爱好体育的人最少有多少人?最多有多少人?
既爱好音乐又爱好体育的人其实就是如下图中两个集合的交集,很容易看出当一个集合完全融于另一个集合时两个集合的交集最大。

也就是说既爱好音乐又爱好体育的人最多有56人。两个集合分别用A、B表示。那么(A∩B)max =min {A,B}。同理三者容斥的最大值(A∩B∩C)max =min {A,B,C}。
既爱好音乐又爱好体育的人最少有多少人呢?我们知道:全集=爱好音乐+爱好体育-既爱好音乐又爱好体育+既不爱好音乐也不爱好体育,即I=A+B-A∩B +○,A∩B=A+B+○-I,A、B、I是固定不变的,那么求A∩B的最小值,那就要求○也最小,○最小可以为0。那么可知(A∩B)min=A+B-I,同理(A∩B∩C)min=A+B+C-2I,(A∩B∩C∩D)min=A+B+C+D-3I。
那么在本题目中既爱好音乐又爱好体育的人最少有:56+75-100=31人。
中公三支一扶考试网相信考生们通过上面的题目可以清晰地了解容斥问题的相关解决办法,熟练地掌握这两种办法尤其是文氏图法是很有必要的。希望各位考生体会方法,通过题目进行深化。
更多考试信息请查看三支一扶考试网,了解三支一扶考试时间、三支一扶考试内容.
注:本站稿件未经许可不得转载,转载请保留出处及原文地址。
