以上为正效率交替合作的问题,还有一个涉及到负效率交替合作的问题。
例2、有一个水池,装有甲、乙、丙三根水管,其中甲、乙为进水管,丙为出水管。单开甲管需15 小时注满空水池,单开乙管需10 小时注满空水池,单开丙池需9 小时把满池的水放完,现按甲、乙、丙的顺序轮流开,每次1 小时,问几小时才能注满空水池?
A.47 B.38 C.50 D.46
【答案】 B
【解析】:典型的关于交替合作的问题,题目体现出已知工作总量一定和两人工作时间,可以设特值,假设总的工作量为90,则甲的工作效率为6,乙的工作效率为9,丙的工作效率为-10,所以1个周期持续的时间为3天,一个周期可以完成总的工作量为6+9-10=5,此种最大效率6+9=15,所以(90-15)÷5=15,就代表共需要15个周期,对应15×3=45天,之后剩下15的工作量需要甲先做1天,乙再工作1天就可以完成,故答案为B。
在考试中交替合作的问题如何应对,只要把以上的两道例题所涉及的正负效率两种类型能够很好的理解,在考试中能够快速判断题型,这种类型的题目往往能够快速求解。
相关推荐:三支一扶考试内容-行测技巧:“比重变化”
更多考试信息请查看三支一扶考试网,了解三支一扶考试时间、三支一扶考试内容.
注:本站稿件未经许可不得转载,转载请保留出处及原文地址。
