地区
中公三支一扶
导航

位置: 三支一扶 >备考技巧 > 行测 > 数量关系 >

三支一扶行测解题之十字交叉

中公三支一扶考试网 2017-01-10

【导语】在三支一扶考试中,普遍反映行测题目信息量大,以数量关系为代表的题目难度较高,如何快解这类题目?中公三支一扶考试网精心准备三支一扶行测数量关系模块的答题技巧,助你行测考试顺利。温馨提示:想获取更多三支备考资料,了解更多三支考试资讯,找到更多三支志同好友,获得更多三支课程请加群511507678

十字交叉法是由盈亏思想得到的,即多的总量等于少的总量,比如:50与60两个数的平均数为55,这里50比55少5,60比55多5,多的5等于少的5,才保证了50与60的平均数为55。下面具体看一道例题。

已知一个班级的一次考试成绩,男生的平均分为70分,女生的平均分为90分,全班总体的平均分为75分,求这个班级的男女生人数比为多少?

由以上两种解析可知:一、十字交叉法和等量关系列等式结果一致,但十字交叉法比等量关系式更直观快速。二、在运用十字交叉法时,大多数考生比较困惑的是利用十字交叉后得到的比是什么比,这里为什么3:1就是对应的男生人数与女生人数之比。这就需要我们用盈亏思想来说明十字交叉法的原理。男生的平均量是70分,整体的平均量是75分,说明每个男生比整体少5分;而女生的平均量是90分,说明每个女生比整体多15分。要想保证整体的平均分是75分,得多的总量与少的总量达到平衡,即多的总量=少的总量。而这里每个男生比整体少5分,男生共有x人,即总共少5x人;每个女生比整体多15分,女生共y人,既总共多15y人;故需5x=15y,得到x:y==3:1,也即交叉作差之比。而男生平均量=男生的总分数/男生人数;女生平均量=女生总分数/女生人数。所以交叉作差之比也是求两个平均量时的分母之比。

快捷入口

相关推荐