例2、牧场上有一片草场,由于入冬天气变冷,草每天均匀枯萎。如果放20头牛5天吃完,如果放15头牛,6天吃完;求放几头牛10天吃完?
中公解析:“如果......”排比句。牛在吃草、草在枯萎,都使草减少。草受两个因素限制,所以是牛吃草问题。
设每头牛每天吃的草量为单位1,草的生长速度为X,牛的头数为N。
原有草量=(20-X)×5=(15-X)×6=(N-X)×10.X=-10,N=5.X为负数表示草在枯萎。
即:5头牛10天吃完。
例3、有一池泉水,泉底均匀不断地涌出泉水。如果用8台抽水机10小时抽干;如果用12台抽水机6小时抽干;如果用14台几小时抽干?
中公解析:“如果......”排比句。抽水机抽水使池水减少,泉水均匀涌出使池内泉水增加。池内的泉水受两个因素限制,所以是牛吃草问题。抽水机是牛,泉水是草。
设每台抽水机每小时的抽水量为单位1,泉水涌出的速度为X,时间问T。
原有池水量=(8-X)×10=(12-X)×6=(14-X)×T.X=2,T=5.
即:14台抽水机5小时抽干。
(二)极值型牛吃草问题
在同一草场放不同的数量的牛有不同种吃法,求为了保持草永远都吃不完,那么最多能放几头牛。
解题技巧:利用原有草量=(牛每天吃掉的草-每天生长的草)×天数,求出草的生长速度,最多的牛的头数=X。
例4、牧场上有一篇青草,每天草都在均匀生长。这片草场可供10头牛20天吃完;或者15头牛10天吃完。问为了保持草永远都吃不完,那么最多能放多少头牛?
